Transcriptome Analysis of Genes Associated with the Artemisinin Biosynthesis by Jasmonic Acid Treatment under the Light in Artemisia annua
نویسندگان
چکیده
Artemisinin is a sesquiterpene lactone endoperoxide extracted from a traditional Chinese medicinal plant Artemisia annua. Artemisinin-based combination therapies (ACTs) are recommended as the best treatment of malaria by the World Health Organization (WHO). Both the phytohormone jasmonic acid (JA) and light promote artemisinin biosynthesis in A. annua. Interestingly, we found that the increase of artemisinin biosynthesis by JA was dependent on light. However, the relationship between the two signal pathways mediated by JA and light remains unclear. Here, we collected the A. annua seedlings of 24 h continuous light (Light), 24 h dark treatment (Dark), 4 h MeJA treatment under the continuous light conditions (Light-MeJA-4h) and 4 h MeJA treatment under the dark conditions (Dark-MeJA-4h) and performed the transcriptome sequencing using Illumina HiSeq 4000 System. A total of 266.7 million clean data were produced and assembled into 185,653 unigenes, with an average length of 537 bp. Among them, 59,490 unigenes were annotated and classified based on the public information. Differential expression analyses were performed between Light and Dark, Light and Light-MeJA-4h, Dark and Dark-MeJA-4h, Light-MeJA-4h, and Dark-MeJA-4h, respectively. Furthermore, transcription factor (TF) analysis revealed that 1588 TFs were identified and divided into 55 TF families, with 284 TFs down-regulated in the Dark relative to Light and 96 TFs up-regulated in the Light-MeJA-4h relative to Light. 8 TFs were selected as candidates for regulating the artemisinin biosynthesis and one of them was validated to be involved in artemisinin transcriptional regulation by Dual-Luciferase (Dual-LUC) assay. The transcriptome data shown in our study offered a comprehensive transcriptional expression pattern influenced by the MeJA and light in A. annua seedling, which will serve as a valuable resource for further studies on transcriptional regulation mechanisms underlying artemisinin biosynthesis.
منابع مشابه
Overexpression of Allene Oxide Cyclase Improves the Biosynthesis of Artemisinin in Artemisia annua L.
Jasmonates (JAs) are important signaling molecules in plants and play crucial roles in stress responses, secondary metabolites' regulation, plant growth and development. In this study, the promoter of AaAOC, which was the key gene of jasmonate biosynthetic pathway, had been cloned. GUS staining showed that AaAOC was expressed ubiquitiously in A. annua. AaAOC gene was overexpressed under control...
متن کاملInducing Effect of Dihydroartemisinic Acid in the Biosynthesis of Artemisinins with Cultured Cells of Artemisia annua by Enhancing the Expression of Genes
Artemisinin has been used in the production of "artemisinin combination therapies" for the treatment of malaria. Feeding of precursors has been proven to be one of the most effective methods to enhance artemisinin production in plant cultured cells. At the current paper, the biosynthesis of artemisinin (ART) and its four analogs from dihydroartemisinic acid (DHAA) in suspension-cultured cells o...
متن کاملRNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua
Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption t...
متن کاملOSC2 and CYP716A14v2 catalyze the biosynthesis of triterpenoids for the cuticle of aerial organs of Artemisia annua.
Artemisia annua is widely studied for its ability to accumulate the antimalarial sesquiterpenoid artemisinin. In addition to producing a variety of sesquiterpenoids, A. annua also accumulates mono-, di-, and triterpenoids, the majority of which are produced in the glandular trichomes. A. annua also has filamentous trichomes on its aerial parts, but little is known of their biosynthesis potentia...
متن کاملOverexpression of the Artemisia Orthologue of ABA Receptor, AaPYL9, Enhances ABA Sensitivity and Improves Artemisinin Content in Artemisia annua L
The phytohormone abscisic acid (ABA) plays an important role in plant development and environmental stress response. In this study, we cloned an ABA receptor orthologue, AaPYL9, from Artemisia annua L. AaPYL9 is expressed highly in leaf and flower. AaPYL9 protein can be localized in both nucleus and cytoplasm. Yeast two-hybrid assay shows AaPYL9 can specifically interact with AtABI1 but not wit...
متن کامل